
The Flexible Modularity of Eloquent
Cohesion

By Chad Jordan June 13th 2014

 1

In this guide you will learn:
1. The fundamental elements and functional advantages of using the Laravel framework
2. How to install and configure PHP, Composer, and Laravel 4.2 in a macOS environment
3. Understanding the improved Model-View-Controller architecture
4. An overall side-by-side comparison of using the Laravel framework versus core PHP

In June of 2011 Taylor Otwell created a free, and open-source web framework for PHP called
Laravel. The intention of the technology was to improve the development of web applications
following the model-view-controller architectural pattern based on the earlier Symfony
framework released in 2005. Why does this matter? Because its architecture and expressive,
beautiful syntax make Laravel object-oriented. Laravel provides an out-of-the-box
configuration so that your applications can be equipped with a secure authentication and
authorization system. Laravel also provides a unified API for various caching systems. The
cache configuration is located at app/config/cache.php. In the cache.php file, you may specify
which cache driver you
would like used by default
throughout your application.
Laravel supports popular
caching backends like
Memcached and Redis out
of the box. Artisan is the
name of Laravel’s own
command-line interface.
When it comes to publishing
package assets, developing
new models, migrations,
and controllers, managing
database migration, and
doing a lot of other stuff,
Artisan makes it easy. By
developing new custom
commands, one can even enhance the capabilities of Artisan. ORM stands for Object Relational
Mapping. Eloquent ORM is an advanced PHP implementation that is used for active record
pattern. It provides at the same time internal methods for enforcing constraints with the
relational between database objects. Eloquent ORM presents database tables with object
instances that are tied to single table rows. One method of using templates in Laravel is via
controller layouts. By specifying the layout property on the controller, the view specified will
be created for you and will be the assumed response that should be returned from actions.
Cashier is new in Laravel 4.2 and is used in subscription-based services that require periodic
payments. Moreover, it has substantial uses in handling coupons and generation invoices as
well. Blade is a simple, yet powerful templating engine provided with Laravel. Unlike controller
layouts, Blade is driven by template inheritance and sections. All Blade templates should use
the .blade.php extension. Laravel can be termed the world’s best PHP-supported framework
for providing extraordinary configuration for Authentication and Authorization. It offers a

Introduction

 2

number of artisan commands at your disposal to make your applications highly authenticated
and secure. These are only several features to introduce some of the advantages of using
Laravel 4, but one of the other advantages of using Laravel 4 is how it is built around the
architecture of events. Events make it really easy for developers to hook on to, or extend the
underlying architecture of the framework in a clean and maintainable way. It also makes it
really easy for us to create events for our own applications so that we create software that is
easier to extend and maintain for others. Are you new to events in programming? If so, an
event is just an occurrence of a particular instance at a particular moment in time. For
example, if you are creating a social application, an event you might be interested in could be
whenever a new user signs up. When a new user signs up using your application, you will
probably have a list of things that need to occur. For example, you will want to send the user
an email, subscribe them to your newsletter or add them to a queue to suggest the next steps
for using your application. By defining the ‘user create’ event, you can set all of these tasks in
motion whenever a new user signs up for your application. So why use events? The beautiful
thing about using an event-based architecture is, that you maintain your separation of
concerns. When an event is triggered it does not need to know anything about what will
happen as a consequence of firing the event.

Throughout this guide, I’ll be providing examples, explanations, and demonstrations of how to
understand the overall instance of Laravel and why it is the best framework for PHP. In this
guide, I’ll be using a terminal environment in macOS X 10.9.5.

Since Laravel is a more detailed framework that manages dependencies, this requires additional
tools for installation alongside Laravel. Laravel 4.2 requires PHP 5.4 or greater. This upgraded
PHP requirement allows the developer to use new PHP features such as traits to provide more
expressive interfaces for tools like Laravel Cashier. PHP 5.4 also brings significant speed and
performance improvements over PHP 5.3. If you do not have version 5.4, you will need to
install it. In a terminal window, run the following command:
sudo curl -s http://php-osx.liip.ch/install.sh | bash -s 5.4

enter your password, hit enter, and simply wait for the installation process to complete.
Note: this process can take up to 5 to 10 minutes.
Once it’s done, verify in your terminal that it’s there:
/usr/local/php5-5.4.29-20140529-223618/

Once you’ve verified that the libphp5.so config file is inside the directory, we have to set up the
built-in apache in order to use PHP 5.4 so now we open the config with the following command:
sudo nano /etc/apache2/httpd.conf

Installing PHP, Composer, and Laravel

 3

Once opened, locate the LoadModule for PHP, it's usually in the end of the list of LoadModules.
Comment the old PHP module out by putting a hash sign (#) in front of it and put the new
module on a new line at the bottom of the LoadModule list, in my case it looks like this
LoadModule php5_module /usr/local/php5-5.4.29-20140529-223618/libphp5.so

Save and exit (CTRL + o + enter) (CTRL + x), and then restart apache with the following
command:
sudo apachectl restart

Next, we have to set the PHP library path so the new PHP binaries will default on command line
execution. Do this by running the following terminal command:
sudo nano /etc/paths

This is what my file looks like, and your file should be similar to this:
/usr/local/php5-5.4.29-20140529-223618/bin/
/usr/bin
/bin
/usr/sbin
/sbin
/usr/local/bin

If not, edit accordingly based on your folder names and PHP version, save and exit just as we
did above for the LoadModule config, then you should probably restart bash at this point. You
can verify to make sure PHP is running normally by creating and opening a file (this is the
default location of the webserver in OS X). Run the following command:
sudo nano /Library/WebServer/Documents/php.php

Once in, enter the following:
<?php
phpinfo();
?>

Save and close, go to your file by entering something like http://localhost/php.php and you
should see a display of the current version of PHP in your browser similar to this:

Now that PHP 5.4 has officially been installed and configured, we can now focus our attention
on Laravel, but before Laravel can be installed, you need to install Composer. Laravel utilizes
Composer to manage its dependencies. First, download a copy of the composer.phar by
entering the following into your browser address bar: https://getcomposer.org/composer.phar

https://getcomposer.org/composer.phar
http://localhost/php.php

4

When you enter that URL, the composer.phar file should automatically download to your
computer. Assuming that the file was downloaded to your Downloads folder and not your
Desktop, we want to execute a command to copy it to the appropriate location in your system
files. You can either keep it in your local project directory or move it to usr/local/bin (on
macOS, or Linux) to use it globally from your system. I’m moving mine to the root system folder
so I can use it globally. We also need to write chmod permissions to the directory that we’re
wanting to execute from, so run the following terminal commands:
mv ~/Downloads/composer.phar /usr/local/bin
sudo chmod +x /usr/local/bin

Now verify the .phar file is in usr/local/bin

Now that we have the .phar file in place, let’s verify the file by running Composer from this
same directory. Run the following command: php composer.phar
and you should see something similar to this in your terminal window:

The list provides the possible commands that can be executed in order to run Composer. To
get the setup file that we need to run, I’m choosing to navigate back to the php5-5.4 folder and
place it in the folder with the rest of my php files.

 5

The location shouldn’t matter as long as it’s within the system path, this is just my preference.
Once in that directory, I run the following terminal command:
sudo php -r “copy(‘http://getcomposer.org/installer’,‘composer-setup.php’);”

This command gets the Composer installer and places it in the current directory.
Check to verify that the setup file is in the directory.

(If you wish to install locally)
You can install Composer to a specific directory by using the --install-dir option and
additionally (re)name it as well using the --filename option. Run the following command:
sudo php composer-setup.php –install-dir=bin –filename=composer

followed by php bin/composer and this will run composer.
(If you wish to install globally)
mv composer.phar /usr/local/bin/composer

If you would like to install it only for your user and avoid requiring root permissions, you can
use ~/.local/bin instead. If you need to add sudo just run it again as a superuser. Some Mac
OS’s are not equipped with the /usr directory by default which means you may receive the
error, "/usr/local/bin/composer: No such file or directory" and if this is the case, you will have
to create the directory manually before proceeding:
mkdir -p /usr/local/bin

Now run composer in order to run Composer instead of php composer.phar
With Composer fully installed and configured, we can now install Laravel. Composer is required
to do this. Begin by running the following terminal command:
composer global require “laravel/installer=~1.1”

The terminal will start installing the list of dependencies. Once it’s completed and reached the
bottom, it will look something like this:

Note: Make sure to place the ~/.composer/vendor/bin directory in your PATH so the Laravel
executable is found when you run the Laravel command in your terminal. We can easily add it
to the etc/paths just as I did earlier for the PHP binary executable paths. Run command:
sudo nano /etc/paths

 6

You can add it to the bottom of the list as I have done here:
/usr/local/php5-5.4.29-20140529-223618/bin/
/usr/bin
/bin
/usr/sbin
/sbin
/usr/local/bin
~/.composer/vendor/bin

Save and exit (CTRL + o + enter) (CTRL + x), and then restart apache
sudo apachectl restart

Once installed, the simple laravel new command will create a fresh Laravel installation in the
directory you specify. For example, laravel new form would create a directory named form
containing a fresh Laravel installation with all dependencies installed! This method of
installation is much faster than installing via Composer and twice as efficient.
To install version 4.2 of Laravel, we can install it via Composer with the following command:
composer create project laravel/laravel {directory} 4.2 –-prefer-dist

With that command run, this essentially completes the out-of-the-box installation and
configuration. Because we used Composer for this process, our configuration key has already
been generated. This is another good reason to go this route rather than manually
downloading from the Laravel website, then extracting and running the file independently of
Composer. The Composer route ensures more security.

MVC (model-view-controller) architecture is one of the best, and Laravel supports it. MVC
architecture is known to improve the performance of any web application by high leaps. It is
also easy to understand because of its clear and brief documentation process. To understand
how Laravel use MVC first
we have to understand the
MVC. Essentially PHP MVC
is a design pattern that
separates the data and
business logic from the
presentation. Model is
basically the collection of
application data and
business logic. It can be
used to perform many
operations like data
validations, process the
data, and store data in the
database. Data can be any
kind like and static file,
database, XML data, or any other kind of valid resource. The controller is the part that deals

Laravel’s MVC Architecture

7

with the user's request, It accepts the user’s request and responds as per the user's request.
For example, if the user requested through URL like /index.php?products=list than the
controller will load the list of product data from the model and output to the user. The view is
just for presenting the data to the user. This is the bridge for the interaction of users to our
server. This is basically written in HTML form. At this stage we want to understand how Laravel
uses the MVC architecture. In Laravel the MVC uses the following manners:
1) Create a project in Laravel.
laravel new product-store

2) Create a model by using the following command.
php artisan make:model Product

3) Connect the database using .env file then create a migration for storing the list of products.
php artisan make:migration create_products_table

4) After created migration successfully just migrate the table into the database.
php artisan migrate

5) Create a controller for handling the request.
php artisan make:controller ProductController -r

6) Create a route to get the request and send it to the controller
use App\Http\Controllers\UserController;
Route::get('/user/{id}', [UserController::class, 'show']);

7) Create a blade template in view by which the user would request
{{request()->query('blade')}}

This process is essentially the behavior pattern of how the MVC is utilized through Laravel. The
MVC pattern helps you break up the frontend and backend code into separate components.
This way, it's much easier to manage and make changes to either side without them interfering
with each other. Additional advantages of using the MVC are:

• Making model classes and code reusable without required modification
• It’s a helpful design pattern when planning development
• Easier to maintain, or modify if desired
• Loosely coupled (meaning each piece of the MVC acts independently of each other)
• Extendable code with higher cohesiveness
• Very popular and widely used in web applications, therefore online support is higher
• Cross-platform Integration with Mail and Messaging Systems
• Fast Caching Integrations
• Supports AMI (Asynchronous Method Invocation)
• Ideal for Developing Large Size Web Application
• Easy for multiple developers to collaborate and work together
• Executing multiple view models

8

With these advantages in mind, the MVC architecture is a solid and elegant approach to
building web apps. MVC frameworks that come packaged with the above-mentioned
advantages, make it easy to implement in your projects. The adoption of the MVC architecture
provides a lesser expense of time & money, and the ability to create multiple views makes it the
best architecture for web app development. The MVC architecture tied into Laravel makes
Laravel the best framework to use with PHP.

Traditional PHP or Core PHP, is the foundational programming language of all PHP frameworks,
including Laravel. Web application development through Core PHP can enable the creation of
an exceptionally dynamic application that can push the limits of web development possibilities.
On its own, PHP has remained a powerful programming language for server-side applications
during the last two decades, but when we use frameworks with existing technologies, we
harness the power of elegant design patterns to create more efficient applications. This is the
intention of frameworks such as Laravel and it’s important to distinguish the differences
between the two technologies. This will help developers ascertain why they should use said
technology. The following graphical chart is a side-by-side comparison to provide visual insight
into supporting user decisions between core PHP and Laravel.

Core PHP vs Laravel

9

For these particular instances, we see that Laravel does excel further as an overall better option
for meeting more efficient requirements while building web applications. For example,

1) We’ve learned that Laravel’s MVC allows for larger amounts of content to be
maintained a lot easier than traditional PHP.

2) While PHP has a faster development process, we understand that Laravel is more
reusable and requires no modifications to the code. If there’s one thing that PHP
developers know it’s that PHP is updated frequently with new changes, so this is
another aspect of Laravel that can alleviate a lot of needless tasks, updating procedures,
and unwanted redundancy to save on time and money.

3) On the other hand, it’s actually PHP that has more flexibility since it’s a programming
language and Laravel is a framework. This is due to the strict rules that Laravel adheres
to regardless of providing more options.

4) When it comes to security, Laravel comes with its own default authorization and
authentication which is more convenient, but it’s not as secure as being able to write
your own security routines in PHP. PHP leaves the door of security wide open for the
developer to customize the security as they see fit.

5) As we learned from my earlier installation process of Laravel, it does rely on
dependencies whereas the advantage of PHP requires no external dependencies in
order to use it.

6) We know that caching is a technique that stores something in memory that is being
used frequently to provide better performance. Laravel takes the win on this since it
invokes cache backs with multiple configurations, while the core of PHP has no caching
mechanism.

7) When it comes to communicating with the MVC, the Controller is responsible for
determining which View to display in response to any action including when the
application loads. This differs from MVP where actions route through the View to the
Presenter. In MVC, every action in the View correlates with a call to a Controller along
with an action. In the web, each action invokes a call to a URL on the other side of
which there is a Controller who responds. Once that Controller has completed its
processing, it will return the correct View. In Laravel, data communication is authorized
via a security token that prevents posting data from other domains, while Core PHP
does not have default data communication authorizations.

8) As for PHP exception handling, this is used to change the normal flow of the code
execution if a specified error (exceptional) condition occurs. This condition is called an
exception. Error and exception handling protocols are already configured in Laravel,
while Core PHP does not support default error and exception handling protocols.

10

What is to be learned from the above comparison? In the end, even if a technology makes the
process more efficient, and easier to use, the final decision is still subjective from user to user.
This is one of the primary reasons why I recommend learning both Core PHP & Laravel, and
then deciding for yourself. In my opinion, by looking at the capabilities of Laravel, I still stand
firm that there hasn’t been a better PHP framework than Laravel, and that includes Symmetry
and CakePHP. Developers and software companies around the globe know Laravel for its
outstanding compatibility and capabilities when it comes to features, and ease of access. I have
personally used PHP numerous times throughout my educational and professional career to
write server-side applications with much ease. As a developer who has used PHP on more than
one occasion, I’m usually on the hunt for the next framework or piece of technology to enhance
the development process. One thing that does seem to stand out for other developers is the
dependencies that Laravel requires at installation. Depending on which method/s developers
are using for their installation approach, there seems to be a consistency regarding time
invested into unwanted configuration. This is based on personal discussions and online forums
that I’ve come across over time.

My hope is that this guide has been helpful in assisting the learning process of using Laravel 4.2
with PHP 5.4. All diagrams & charts presented in this guide were created by Chad Jordan for
learning purposes only. The terminal command images were generated from screenshots that I
took throughout the installation process on my MacBook Pro. For any possible inquiries such as
general questions regarding this guide or other professional inquiries please feel free to email
me at cjordan@wondercreationstudios.com
Resources Used:

• Otwell, Taylor - Laravel: From Apprentice to Artisan – 2013
• Laravel.com
• W3schools.com

Conclusion

https://www.laravel.com
https://www.w3schools.com

